Posted on

Issue 05 (2021)

Considerations for Complex Industrial Cooling Water Monitoring and Treatment

Brad Buecker and Rajendra P. Kalakodimi

Heat exchangers are, of course, a critical component of power and heavy industrial plants. Many of these are water cooled, with the source being a cooling tower (commonly known as an open cooling system) or sometimes once-through cooling. Often, “closed” systems are also present, which are cooled by primary heat exchangers, but whose chemistry is significantly different from that of open systems. Successful chemical treatment of the wide variety of cooling systems in plants requires analysis of many factors, including the potential for corrosion, scaling, and microbiological fouling, system metallurgy, operating temperatures, and others, all of which are examined in this article. Also discussed are several significant improvements to chemical treatment programs in recent years, improvements that maintain proper heat transfer and reliability of cooling systems.

PPCHEM® 2021, 23(5), 198–205

For Members only

Weighted Salt Hours – A New Approach in Cycling Plants

Frank Udo Leidich

Thus far, the chemist in a power plant has quite often been regarded as a necessary evil or as inevitable costs. To leverage the activity of the power plant chemist and make his/her work observable and tangible in an economic sense to the management, it is proposed to introduce a new parameter, weighted salt hours, that can be used to link the key chemistry parameters with key economic performance indicators. To do this, data mining and application of statistical methods, like gauging of repeatability and reproducibility, multifactor analysis, and others analyses, are needed. Of course, such efforts can only be successful if a very high number of power plants participate and contribute to this.

PPCHEM® 2021, 23(5), 206–210

For Members only

Flexible Operations in the Energy Transformation: High-Level Impacts on Cycle Chemistry

Mike Caravaggio

Electricity generation is changing, and these changes impact all aspects of the plant. The following paper sets out some of the key changes and the high-level impacts on cycle chemistry in thermal plants. It is incumbent upon power plant chemists and chemical engineers to understand the details of how flexible operation affects their specific units, so that they can develop optimal, unit-specific solutions.

PPCHEM® 2021, 23(5), 212–220

For Members only

Assessing Corrosion in Air-Cooled Condensers at Eskom Medupi Power Station

Sabelo Khanyile, Stephanie Marais, Setsweke Phala, Zanele Dladla, and Nestor van

Steam side surfaces of air-cooled condensers (ACC) are prone to corrosion. If the
corrosion mechanism is not understood and mitigated, it can lead to ACC tube failure(s),
and subsequent vacuum and/or condensate chemistry deterioration. Most importantly, the
total iron levels entering the condensate and feedwater systems will be much greater than
international guidance. This paper reports on the ACC corrosion assessment performed on
Unit 5 of Medupi power station. The ACC condensate chemistry is reviewed and the
“Dooley Howell ACC Corrosion Index” is reported. The latter was derived from the physical
inspections of the internal surfaces of the ACC. The inspections were conducted when the
unit was on all-volatile treatment, under oxidising conditions (AVT(O) regime), as well as
after transitioning to an oxygenated treatment (OT) regime. The benefits of transitioning
from AVT(O) to OT are also reported.

PPCHEM® 2021, 23(5), 222–228

For Members only

Posted on

Issue 04 (2021)

Monitoring Industrial Plant Discharge Metals and TOC

Brad Buecker and Ken Kuruc

Industrial facilities such as refineries, petrochemical plants, steel mills, metal finishing facilities, pulp and paper mills, pharmaceutical plants, etc. require substantial wastewater treatment, as some processes at these facilities can release many complex carbon compounds or other toxic constituents, including metals, to waste streams.

While various techniques are available for measuring trace level metals in process water, to date they have been rather unavailable to many industrial locations because of capital cost requirements or the need for specially trained technicians. Two well-known techniques are inductively-coupled plasma and atomic absorption spectroscopy, which need specially trained operators and require complex sample preparation and expensive instrumentation.

This article discusses another existing technology, colorimetry, which has been modified for on-line monitoring. The method is suitable for many facilities and can be operated by a wide range of plant personnel. In many cases, the readings can be enhanced with TOC analyses to provide additional protection for industrial water/steam systems.

PPCHEM® 2021, 23(4), 152–157

For Members only

Film Forming Amines – An Appraisal

Wolfgang Hater

The technology of film forming amines or more generally film forming substances in water treatment has been well known for decades. The acceptance of their application in watersteam cycles was significantly increased by two IAPWS Technical Guidance Documents issued in 2016 and 2019. These documents provide a brief synopsis of the scientific knowhow, and, more importantly, give practical guidance to people interested in this technology. This paper reviews and summarizes the scientific progress since then and identifies further research needs. Film forming substances have an important potential for the reduction of plant emissions, which, in addition to the demand for molecules with improved environmental properties, is looked upon as a driving force for future development.

PPCHEM® 2021, 23(4), 162–175

For Members only

Conferences and Seminars Organized by PPCHEM AG – An Overview

Tapio Werder and Michael Rziha

Since 2012, PPCHEM AG and its precursor organization, Waesseri GmbH, have organized more than 30 conferences and seminars around the world with the mission of expanding the knowledge of cycle chemistry and the understanding of analytical instruments. Over the past 9 years, different formats of events have been developed to fit the different needs and interests within the power plant chemistry community.

The first kind of event series developed was called Power Cycle Instrumentation Seminars (PCIS), with the mission of expanding the knowledge of cycle chemistry and the understanding of sampling techniques and analytical instruments. Based on the feedback from the PCIS participants a new series of events – PowerPlant Chemistry Forums (PPCF) – was introduced in 2016. Compared to the PCIS the PPCF does not concentrate exclusively on sampling and instrumentation, but instead includes a wide variety of nearly all aspects of power plant chemistry, such as life-cycle chemistry optimization, start-up chemistry and early operation experience, and plant failures and subsequent chemistry adjustments. The forum is basically a typical conference, where numerous international speakers from many different organizations present, hence it is a platform for all participants to exchange information and knowledge and for networking.

Beside the PCIS and the PPCF, educational seminars have also been developed and offered. These seminars are typically focused on a “hot topic” from power plant chemistry and usually they are conducted by PPCHEM’s chief key expert power plant chemistry Michael Rziha.

This contribution outlines the developments in the past years and gives more details on the different formats of events which are currently organized by PPCHEM AG.

PPCHEM® 2021, 23(4), 180–185

For Members only

PRESS RELEASE: EPRI 13th International Conference on Cycle Chemistry in Fossil and Combined Cycle HRSG Plants (ICCC13): Details Advances in R&D

EPRI’s 13th International Conference on Cycle Chemistry in Fossil and Combined Cycle HRSG Plants was conducted virtually June 22–24, 2021.

The conference was attended by 146 different professionals representing 10 countries, including Australia, Canada, Malaysia, Philippines, Taiwan, South Africa, Switzerland, United Kingdom, United Arab Emirates, and the United States.

The EPRI Boiler and Turbine Steam and Cycle Chemistry R&D program (Program 226) conducts collaborative research led by Program Manager Brad Burns. The collaborative program is a global leader in comprehensive research in power plant steam and water cycle treatment to minimize corrosion and deposition.

The conference is hosted by EPRI every three years. This latest event featured 21 presentations by international experts, equipment manufacturers, chemical suppliers, and power plant chemistry users. Discussions on a wide range of cycle chemistry-related topics added participation value to plant users, equipment and chemical suppliers, and researchers.

PPCHEM® 2021, 23(4), 186–187